Quark and gluon contributions to the spin and momentum of the nucleon from lattice QCD

Giannis Koutsou

Computation-based Science and Technology Research Centre (CaSToRC)
The Cyprus Institute

POETIC7, 15 November 2016, Temple University, Philadelphia

CaSToRC

★ Results here by Cyprus — DESY — Temple

C. Alexandrou, S. Bacchio, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, F. Steffens, A. Vaquero, C. Wiese

★ETMC collaboration

Cyprus (U. Cyprus and Cyprus Inst.)

Germany (Berlin/Zeuthen, Bonn, Frankfurt)

Italy (Rome I, II, III, Trento)

Poland (Poznan)

Switzerland (Bern)

UK (Liverpool)

Outline

- ★ Short introduction to lattice calculations
 - Challenges and current landscape
- ★ Nucleon spin on the lattice
 - Axial charges
 - Moments of PDFs
 - Spin decomposition
 - Gluon moment
- ★Summary and outlook

Lattice QCD — ab initio simulation of QCD

- Freedom in choice of:
 - quark masses (heavier is cheaper)
 - lattice spacing a (larger is cheaper)
 - lattice volume L³×T (smaller is cheaper)
- Choice of discretisation scheme

e.g. Clover, Twisted Mass, Staggered, Overlap, Domain Wall

Trade — offs and advantages for each differ

Eventually, all schemes must agree:

- At the continuum limit: $a \rightarrow 0$
- At infinite volume limit L → ∞
- At physical quark mass

Simulations landscape

Selected lattice simulation points used for hadron structure

- Multiple collabs. simulating at physical pion mass
- Size of points indicates $m_{\pi}L$

Sources of uncertainty

- Statistical error: $\frac{1}{\sqrt{N}}$, with MC samples
- Correlation functions:
 exponentially decay with time-separation
- Disconnected contributions:
 stochastic error

- Systematic uncertainties
 - Extrapolations
 - a, L, m_{π}
 - Contamination from higher energy states

Sources of uncertainty

- Statistical error: $\frac{1}{\sqrt{N}}$, with MC samples
- Correlation functions:
 exponentially decay with time-separation
- Disconnected contributions:
 stochastic error

- Systematic uncertainties
 - Extrapolations a, L, m_{π}
 - Contamination from higher energy states

Multi-petascale to exa-scale requirements

Indicative computer time requirements for nucleon structure

Increased time separations required for suppression of excited states at physical point

Multi-petascale to exa-scale requirements

Indicative computer time requirements for nucleon structure

Multi-grid/deflation methods for large speed-ups, especially at physical point

Reproduction of light baryon masses

- Agreement between lattice discretisation schemes
- Reproduction of experiment

Prediction of yet-to-be-observed charmed baryons

- Confidence through agreement between lattice schemes
- Nucleon structure...

Nucleon structure on the lattice

Lattice: moments of GPDs are readily accessible

Unpolarised

$$\mathcal{O}_{V}^{\mu\mu_{1}\mu_{2}...\mu_{n}} = \bar{\psi}_{\Upsilon}^{\{\mu}iD^{\mu_{1}}iD^{\mu_{2}}...iD^{\mu_{n}\}}\psi$$

$$\langle 1 \rangle_{u-d} = g_V, \ \langle x \rangle_{u-d}, \ \dots$$

Helicity

$$\mathcal{O}_{A}^{\mu\mu_{1}\mu_{2}...\mu_{n}} = \bar{\psi}_{\gamma_{5}\gamma}^{\{\mu}iD^{\mu_{1}}iD^{\mu_{2}}...iD^{\mu_{n}\}}\psi \qquad \bullet$$

$$\langle 1 \rangle_{\Delta u - \Delta d} = g_A, \ \langle x \rangle_{\Delta u - \Delta d}, \ \dots$$

Transverse

$$\mathcal{O}_{T}^{\nu\mu\mu_{1}\mu_{2}...\mu_{n}} = \bar{\psi}\sigma^{\nu\{\mu}iD^{\mu_{1}}iD^{\mu_{2}}...iD^{\mu_{n}\}}\psi$$

$$\langle 1 \rangle_{\delta u - \delta d} = g_T, \ \langle x \rangle_{\delta u - \delta d}, \ \dots$$

Isovector matrix element:

$$\langle N|\bar{u}\gamma_5\gamma_k u - \bar{d}\gamma_5\gamma_k d|N\rangle \to g_A$$

 m_{π} =135 MeV, Twisted Mass: Phys.Rev. **D92** (2015) 114513

Isovector matrix element:

$$\langle N|\bar{u}\gamma_5\gamma_k u - \bar{d}\gamma_5\gamma_k d|N\rangle \to g_A$$

 m_{π} =135 MeV, Twisted Mass: Phys.Rev. **D92** (2015) 114513

Axial charge

- Agreement towards experiment
- Simulations very close to or at the physical quark mass
- At physical point: statistics of ~10⁴, up to 1.3 fm separation

Axial charge

- Agreement towards experiment
- Simulations very close to or at the physical quark mass
- At physical point: statistics of ~10⁴, up to 1.3 fm separation

$\bar{u}\gamma_5\gamma_\mu u + \bar{d}\gamma_5\gamma_\mu d$

Axial charge — light disconnected

- Required for individual u- and d- contributions
- Requires dedicated calculations for "disconnected quark loop"
- Large statistical fluctuations in correlation functions
- >10⁵ statistics at all available separations
- Sign is negative: brings connected result down
- About 10% of connected value

Axial charge — strange contribution

- Contribution exclusively by disconnected quark loop
- Results also at physical light quark masses
- Weak dependence on light quark mass

Contributions to nucleon spin

$$\Delta \Sigma^q = g_A^q$$

Axial charge — intrinsic quark spin contributions to nucleon spin

- Negative down-quark contribution
- Small strange-quark contribution
- Including disconnected contributions (open symbols) better agreement with experiment (asterisks)

Momentum fraction

$$\mathcal{O}_V^{\mu\nu} = \bar{\psi}\gamma^{\{\mu}iD^{\nu\}}\psi \to \langle x\rangle_q$$

Momentum fraction

Disconnected contribution

- Needed for isoscalar
- O(10⁵) statistics to obtain statistically non-zero value
- Needed for individual quarkcontributions
- To obtain spin-decomposition of nucleon

Spin decomposition

Ji's spin sum:
$$\frac{1}{2} = \sum_{q} (\frac{1}{2}\Delta\Sigma^{q} + L^{q}) + J^{G}$$

$$J^{q} = \frac{1}{2}\Delta\Sigma^{q} + L^{q} = \frac{1}{2}[A_{20}^{q}(0) + B_{20}^{q}(0)]$$

$$\Delta \Sigma^q = g_A^q$$

Nucleon spin

- Total *I* spin contributions from unpolarised matrix element A_{20} , B_{20} .
- Intrinsic spin contributions from axial matrix element $\Delta\Sigma$
- Orbital angular momentum of quarks from difference
- $J^{u+d+s} = 0.398(60)$, implies $J^G = 0.102(60)$

Gluon moment

Ji's spin sum:
$$\frac{1}{2} = \sum_{q} (\frac{1}{2}\Delta\Sigma^{q} + L^{q}) + J^{G}$$

$$J^G = \frac{1}{2} [A_{20}^G(0) + B_{20}^G(0)]$$

$$\mathcal{O} = \frac{2}{9} \frac{\beta}{a^4} \left[\sum_{i} \Re(P_{i4}) - \sum_{i < j} \Re(P_{ij}) \right]$$

Renormalisation

Mixing with quark operator

$$\left(egin{array}{c} J_q \ J_G \end{array}
ight) = \left(egin{array}{cc} Z_{qq} & Z_{qG} \ Z_{Gq} & Z_{GG} \end{array}
ight) \left(egin{array}{c} J_q^{
m bare} \ J_G^{
m bare} \end{array}
ight)$$

Spin decomposition

Ji's spin sum:
$$\frac{1}{2} = \sum_{q} (\frac{1}{2} \Delta \Sigma^{q} + L^{q}) + J^{G}$$

$$J^{q} = \frac{1}{2}\Delta\Sigma^{q} + L^{q} = \frac{1}{2}[A_{20}^{q}(0) + B_{20}^{q}(0)]$$

$$\Delta \Sigma^q = g_A^q$$

$$J^G = \frac{1}{2} [A_{20}^G(0) + B_{20}^G(0)]$$

Nucleon spin

- $-J^G = 0.160(12)$ from direct calculation PoS(DIS2016) [arXiv:1609.00253v1]
- $J^{u+d+s+G} = 0.541(59)$

Summary and outlook

★Lattice QCD in new era

- Physical pion mass simulations from a number of collaborations
- Other systematic uncertainties coming under control

★Nucleon spin

- Axial charge and momentum fraction at the physical point
- Results for disconnected fermion loops thanks to improved methods, order of magnitude more statistics
- New gluon moment calculations reveal gluon contribution to spin

★What to expect

- Thorough estimation of systematic errors: continuum and infinite volume limits
- B_{20} calculation for disconnected and gluon
- Longer term: effects of isospin breaking and electromagnetic effects

Backup slides

Nucleon sigma – terms

- Pion nucleon σ -term: $\sigma_{\pi N} = m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle$
- Strange σ -term: $\sigma_s = m_s \langle N | \bar{s}s | N \rangle$

1. Direct calculation of matrix elements

Involves disconnected contributions

2. Through Feynman - Hellmann theorem: $\sigma_{\pi N} = m_{ud} \frac{\partial m_N}{\partial m_{ud}}$ $\sigma_s = m_s \frac{\partial m_N}{\partial m_s}$

- Reliance on effective theories for dependence on m_π
- Weak dependence on ms

Nucleon sigma – terms

Phys. Rev. Lett. 116 (2016) 252001

- Recent results using direct matrix element evaluation [★]
- Large errors in FH-method [](especially strange) due to sensitivity to quark mass
- Compare to phenomenology [●]

Momentum fraction

- Large sink-source separation
- >50000 statistics

Convergence of strange and light disconnected axial charge

